jueves, 31 de octubre de 2013

El gran guerrero contra el sida es un clon

Uno de los avances más prometedores en la lucha contra el sida se ha producido este mismo año: el aislamiento, a partir de personas infectadas con el VIH, de una serie de anticuerpos capaces de neutralizar no solo al virus que los indujo en el cuerpo del paciente, sino también a la mayoría de las cepas virales que circulan por la población humana. Dos trabajos publicados en Nature por científicos de la Universidad de Harvard y los institutos nacionales de la salud, ambos en Estados Unidos, demuestran ahora que ciertas combinaciones de esos anticuerpos reducen de forma drástica la carga viral en macacos infectados. Ambos grupos proponen ensayos clínicos inmediatos en humanos.

Los anticuerpos de amplio espectro contra el sida parecen contradecir la maldición mil veces repetida y comprobada que lastra la investigación sobre una posible vacuna desde hace décadas:
que la enorme variabilidad del VIH convierte cualquier respuesta inmunológica contra él en flor de un día, en un éxito siempre relativo por culpa de su fecha de caducidad. Pero la variabilidad de un virus, como también se ha comprobado con la gripe, no es más que una máscara, o una colección de máscaras que confunden al sistema inmune para esconder la verdadera esencia del agente infeccioso: las cosas que son demasiado importantes como para cambiar con esa ligereza, los escurridizos talones de Aquiles del VIH.

Los trabajos encabezados por Dan Barouch, del centro Beth Israel Deaconess de la Facultad de Medicina de Harvard, en Boston, y Malcolm Martin, del Instituto Nacional de Alergias y Enfermedades Infecciosas (NIAID, uno de los institutos nacionales de la salud norteamericanos), en Bethesda, no utilizan directamente los anticuerpos obtenidos de la sangre de los pacientes; las personas que tienen la fortuna de desarrollar esos anticuerpos protectores son escasas, y su producción de sangre es tan escasa y valiosa como la de cualquier Homo sapiens. En vez de esto, los científicos han utilizado anticuerpos monoclonales, uno de los grandes avances de la medicina contemporánea, que les valió el Premio Nobel en 1984 a sus descubridores, César Milstein y Georges Köhler.

Cuando el virus del sida infecta el cuerpo se inicia una guerra darwiniana: no solo entre las variantes del virus y los glóbulos blancos de la sangre (linfocitos), sino también —o sobre todo— entre unos glóbulos blancos y otros, en un feroz proceso evolutivo donde la célula que produce los anticuerpos más afines por el virus obtiene la recompensa de una mayor tasa de propagación. La tecnología de los monoclonales permite justamente clonar esos linfocitos: hacerlos inmortales y propagarlos cuanto haga falta, incluso a escalas industriales. Esto es lo que Barouch, Martin y los demás han hecho con los raros y valiosos linfocitos de los pacientes privilegiados de sida, los que producen anticuerpos potentes y de amplio espectro contra el VIH.

La eficacia de estos anticuerpos monoclonales se comprobó primero en ratones humanizados (en los que la parte relevante de los genes del sistema inmune se han sustituido por su versión humana), y ahora han superado la última prueba antes de someterse a ensayos clínicos en humanos. Las combinaciones adecuadas de los anticuerpos monoclonales neutralizantes y de amplio espectro han logrado reducir la carga viral hasta niveles indetectables en un ensayo con 18 macacos rhesus que padecían una infección crónica con un virus muy similar al del sida humano: el SHIV, un híbrido del virus humano VIH y de su primo simiesco SIV, considerado por los investigadores el sistema modelo óptimo para preparar el salto a pacientes humanos.

En los ensayos con macacos, el virus desaparece rápidamente de la sangre y sigue muy bajo o incluso indetectable semanas o meses después. Y lo que parece aún más importante: cuando el virus vuelve a subir al cabo del tiempo, ello no se debe a que haya mutado a una forma resistente (como ocurre ahora con los fármacos antivirales), sino a que los anticuerpos monoclonales se han reducido demasiado en la sangre; por tanto, basta reinyectárselos al mono para que el virus vuelva a bajar. Los laboratorios de Harvard y de los NIH en Bethesda proponen pasar a los ensayos clínicos en humanos cuanto antes. Creen que sus anticuerpos monoclonales pueden marcar un salto cualitativo en la lucha contra el sida.

“Este tipo de estrategia terapéutica basada en anticuerpos ya se había intentado, pero con unos anticuerpos menos potentes”,
explica José Alcamí, jefe de la Unidad de Inmunopatología del Sida del Instituto Carlos III en Madrid, y conocedor de las investigaciones que publica ahora Nature. Alcamí considera que la principal contribución de los nuevos trabajos es haber demostrado el vigor de un anticuerpo muy concreto.
“El famoso PGT121”,
como lo llama él con toda familiaridad.

El PGT121 fue aislado hace pocos años de un paciente africano infectado de SHIV. No solo se caracteriza por su potencia antiviral y un espectro neutralizante muy amplio contra cepas muy diversas del virus humano, sino también por un modo de acción muy peculiar. Mientras que la inmensa mayoría de sus colegas reconoce pequeños segmentos de proteína en el agente infeccioso, el PGT121 va dirigido contra un tipo completamente distinto de molécula viral (un glicano). Algunos especialistas ven en ello una pista interesante para diseñar los anticuerpos del futuro.


En cierto sentido, el PGT121 es un producto de la más avanzada ingeniería molecular que conocen los científicos terráqueos: la practicada por el sistema inmune para bregar no ya con los virus y bacterias existentes, sino con cualquiera de los que puedan llegar a existir: con cualquiera de las moléculas invasoras concebibles. El mecanismo implica sofisticados sistemas de recombinación genética, selección clonal y mutación somática —cambios de letra en el ADN ocurridos durante la exposición a la enfermedad—, y el cuerpo del paciente africano pasó por todos ellos antes de que los médicos extrajeran el valioso PGT121 de su sangre.

Pero, una vez que la naturaleza ha hecho eso una vez, los ingenieros genéticos humanos pueden sacar partido de ello, y también pueden hacer algo todavía mejor: aprender a emular el proceso. Los laboratorios de biología molecular ya han hecho grandes progresos con las técnicas de evolución artificial que imitan claves cada vez más profundas de los engranajes de la naturaleza.


Pero entonces, ¿estaba aquel paciente africano protegido contra el sida de forma natural? “No”,
responde Alcamí,
“esa es una de las paradojas de todo este asunto; todos estos pacientes de los que se han obtenido los anticuerpos tienen la infección crónica como cualquier otro paciente; el virus desarrolla mutaciones que le permiten escapar”.

En el caso de los nuevos experimentos con macacos, ese no es el caso. El virus, desde luego, acaba reapareciendo en la sangre a los 60 o 90 días del tratamiento con los anticuerpos monoclonales, pero la razón no es que haya mutado a una forma resistente. La razón es, simplemente, que los anticuerpos han desaparecido de la sangre, y basta reinyectarlos para que el virus vuelva a reducirse a niveles indetectables. Pero el caso es que los pacientes humanos que inventaron esos anticuerpos no son tan afortunados.

¿Por qué? Alcamí apunta una posibilidad: los macacos de los experimentos fueron infectados en primer lugar con un virus clonal: una especie molecular única obtenida de una cepa viral de laboratorio. Y las infecciones de la vida real se componen de virus más diversos: a menudo familiares cercanos, pero variables de todos modos.